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A theory of fluctuations of macrovariables in nonequilibrium systems based 
on a nonlinear master cquation is outlined. This equation takes into account, 
via a "mean field" type of approximation, the effect of the spatial extension 
of fluctuations. A comparison with the birth and death formalism reveals 
several unsatisfactory features of the latter. 
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1.  I N T R O D U C T I O N  

The  impor t ance  o f  f luctuat ions in the behavior  o f  complex  systems is well 
recognized.  Such p h e n o m e n a  as equi l ibr ium phase  t ransi t ions ,  (1~ hydro-  
dynamic  instabil i t ies,  (2~ the onset  o f  dissipat ive structures in nonl inear  react ion 
diffusion systems far f rom equi l ibr ium,  (a'4~ or  the ext inct ion of  a species in a 
system of  in teract ing popu la t ions  ~ are all due pr imar i ly  to f luctuations.  The  
la t te r  modi fy  qual i ta t ively  the macroscop ic  regime descr ibed by the con- 
servat ion equat ions  and confer  to the evolut ion an essential ly stat ist ical  

character .  
In  this paper  we are concerned with the descr ip t ion  of  f luctuat ions in 

nonlinear, nonequilibrium systems undergoing  chemical  react ions  and diffusion. 
Mos t  o f  our  results will refer to macroscopica l ly  homogeneous  systems 
descr ibed by the fami l ia r  mass conservat ion  equat ions :  

dNi/dt = ~ viDw~({N~}) =-- f({Nj}),  i = 1 ..... n (1) 
P 
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v~p are the stoichiometric coefficients and w D the velocity of reaction p. The 
N~ are composition variables (densities, mole fractions, or even particle 
numbers). From time to time we shall present some generalized results 
applicable to inhomogeneous systems as well: 

8NJOt = f({Nj)) + D, V2N,, i = 1,..., n (2) 

where (D,) are the diffusion coefficients of the chemical species. It is well 
known that the solutions of systems (1) and (2) present several unexpected 
features, such as limit cycle behavior, spatial ordering, or wavelike activity. <6) 
Following Prigogine, we shall call these regimes dissipative structures. 

Traditionally, fluctuations in chemical systems have been studied by 
means of the so-called master equations of the birth and death type/7) This 
formalism was extended to nonequilibrium situations by Babtoyantz, Prigo- 
gine, and Nicolis. <a'4,8'9> The following results have been established. 

(a) At equilibrium the probability distribution in an ideal reacting 
mixture under open system conditions is a Poisson distribution and reduces to 
the Einstein law in the limit of a large number of particles. 

(b) Result (a) extends to linear systems (unimolecular reactions) arbi- 
trarily far from equilibrium. 

(c) Nonlinear systems behave in a distinctly non-Poisson fashion. In 
particular, the mean square deviation of fluctuations becomes 

(3X 2) = (X)(1 +/z)  (3) 

where the factor /z is system dependent. In systems lacking asymptotic 
stability,/z diverges or depends explicitly on timeJ 3~ 

On the basis of these conclusions, Prigogine and Nicolis challenged the 
validity of the birth and death formalism and observed that the highly non- 
Poisson behavior is incompatible with the fact that, on the average, the systems 
described are quite close to local equilibrium. Subsequently, they developed a 
completely local phase space description of fluctuations ~3'1~ which pre- 
dicted a Poisson behavior for small thermal fluctuations. Large-scale fluctua- 
tions appear, on the other hand, to be correctly described by a birth and death 
type formalism. These results suggest ~8'4,1~ that the amplification of fluc- 
tuations leading to an instability involves a mechanism of nucleation of 
fluctuations in a suitable subvolume, and that beyond a critical size of the 
nucleus the fluctuations will spread and "contaminate" the entire system. 

Quite recently there has been a considerable controversy on the status of 
both the birth-and-death and the phase-space descriptions. Thus Saito ~12) 
claimed that the birth and death formalism always gives a Poisson-like co- 
variance for the fluctuations in the limit of large systems. Kuramoto ~13~ and 
Nitzan and Ross ~4~ suggested the seemingly opposite result: Namely, that 
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the phase-space description predicts in general non-Poisson behavior. Replies 
to tLe comments of these authors have been given recently by Nicolis et al. (11~ 
and by Mazo. (15~ 

The purpose of the present paper is to reexamine the foundations of the 
birth and death formalism and to develop a simplified theory of local fluctua- 
tions in nonequilibrium systems. In Section 2 we examine the equilibrium 
limit of the birth and death master equations. We show that the validity &the  
Poisson distribution in this limit implies a unique form of the transition 
probabilities appearing in this formalism. In Section 3 we point out a number 
of deficiencies of this formalism with the form of transition probabilities 
derived in Section 2. Section 4 is devoted to an extension of the birth and death 
theory permitting a description of local fluctuations. Our analysis, 2 which 
appears to be "intermediate" between the birth-and-death and phase-space 
approaches, has the principal virtue of simplicity as opposed to the rather 
complicated phase-space master equations. The properties of the master 
equation are analyzed in Sections 5 and 6. The applications of the formalism 
to the analysis of instabilities are reported in a forthcoming paper by Van 
Nypelseer, Kitahara, and the authors. 

2. THE E Q U I L I B R I U M  L I M I T  

In this section, as well as in Section 3, we shall adopt the usual assumption 
that Eq. (1) defines a Markovproeess of the birth and death type in the space 
of  the numbers of  particles of the various constituents. The evolution of the 
probability distribution P({X~}, t) for having, at time t, Xz particles of con- 
stituent 1 (l = 1,..., n) is given by a Kolmogorov-type equation: 

dP({Xz}, t)/dt = ~ W({Xz - vzo}-+ {Xt})P({X~ - vzD}, t) 
P 

- ~ W({Xz}-+ {X~ + u~p})P({Xz}, t) (4) 
P 

subject to 

P~>O; P({X1}, t) = 1, Vt; ~ W(i--+j) = 0 (5) 
{xO ] 

rzp is the step of variation of X~ in the pth reaction. The first problem that 
arises in connection with the birth and death formalism is to determine the 
transition probabilities per unit time W in an unambiguous fashion. We shall 
first assume that W is independent of P. Although it is generally agreed that 
W should then be a polynomial in Xz's, a general form of this polynomial has 
not been adopted universally. Thus the expression 

w ( z  + r -+  x )  oc ( x  + 1) .-. (X + r) (6) 

2 Preliminary accounts of this description are found in Refs. 4, 16, and 17. Similar 
approaches have been adopted recently by Kuramoto (aS) and by Nitzan et al. (19~ 
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based on combinatorial arguments is frequently replaced by expressions such 
as  

W ( X  + r --~ X)  oc ( X  + 1) ~, etc. (7) 

We shall now show that if, in addition to (5) we impose the condition 
that, in an ideal mixture at equilibrium: 

Pequn = PPois~o, = e-<X>{X)x/X! (8) 

then Wis determined uniquely. We may note that (8) is a rigorous consequence 
of the statistical mechanics of ideal systems. (1) Moreover it does not involve 
any asymptotic approximation on X or {X),  but only on the size of the entire 
system (chemicals + solvent), which is taken to be large. 

2.1. A Simple Example 

We consider the following reactions (in an open system): 
kz 

r X  ~ A (9) 
k-1 

A is considered to be in excess and will therefore be treated as a constant. This 
decoupling assumption, discussed in Ref. 8, need not involve any asymptotic 
approximation on X but relies entirely on the limit A -+ ~ .  At the steady 
state, Eq. (4) becomes 

o = w ( x  + r -+ x ) P ( X  + r) - w ( x - +  x - r ) P ( X )  

+ k _ I A P ( X  - r) - k _ I A P ( X ) ,  0 ~ X <~ oe (10) 

Note that the transition probability for the back reaction has been written as 
k _ l A ,  (8) due to the linear character of this step. 

From Eq. (10) it follows that 

f ( X )  = W ( X  + r --~ X ) P ( X  + r) - k_  l A P ( X )  

= U(X - r), V X  (11) 

The only nonoscillatory solution of (11) is 

f ( X )  = const = C = 0 (12) 

Indeed, from (11) it follows that C = f ( X  - r), which vanishes identically for 
X < r. Thus 

W ( X  + r---~ X)  = k _ I A P ( X ) / P ( X  + r) 

or, from (8) at equilibrium, 

W ( X  + r -+ X)  = k_~A<X>-r (X  + 1) -.. (X + r) (13) 

Insofar as W is independent of P - - and  thus also of <X>--Eq. (13) imposes 

k _ i A  = a<S)  r (14) 

W ( X  + r ~ X) = Z(X + 1) ... (X + r) (15) 
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where A is a numerical constant. The point is that (14) is identical to the law of 
mass action, provided 

A = k l / r !  (16) 

It follows that 

W ( X  + r ---> X )  = k l ( X  + 1) ... (x + r)/r ! (17) 

in agreement with (6). Note that k_ 1 and k~ are, respectively, of the order of 
(volume) -a and (volume) -r. The open system assumption X / A  << 1 can be 
ensured with k_  1/kl << 1. 

A remarkable corollary of this result is that equilibrium chemical kinetics 
[Eq. (14)] appears to be an exact  consequence of the master equation and of 
the Poisson distribution, in the sense that it does not seem to involve any 
asymptotic assumption on the size of (X) .  Stated differently, in a fluctuating 
system, the Guldberg-Waage law keeps exactly the form (!4) rather than the 
form 

k~A = A(X r) (18) 

Some brief remarks in the same direction can be traced back to Landau and 
Lifshitz. m 

2.2. The General Case 

We now consider an arbitrary step in an equilibrium chain, e.g., 

kz 
r X  + {...} > E (19) 

The contribution of this step to the master equation reads 

d P ( X ,  {X'}) /dt  = W ( X  + r ~ X;  { X ' } ) P ( X  + r, {X'}) 

- W ( X - +  X - r ;  { X ' } ) P ( X ,  {X'})  + ... (20) 

In the case of a Poisson distribution we want (20) to reduce to the macro- 
scopic kinetic laws exactly, or, more precisely, up to terms of O(1/E,.. .) ,  

where {E,...} are the reservoir variables kept constant. Taking the average of 
(20) after multiplying with X, one obtains 

co 

lim ~ [ X W ( X  + r ~ X ) P ( X  + r) 
P(X) ~PolssoI1 X~--O 

(X) r  (21) - XW(X---> X - r ) P ( X ,  t)] = - r k  r ! ..... 

where [cf. (19)] 

k = kl{'"} 
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Adding and subtracting r from X in (21), one finally obtains the following 
condition on W. 

c~ 

lim ~ W ( X  + r-+ X ) P ( X  + r) = k (X)r / r  ! (22) 
P ( X ) ~ P o i s s o n  X'~= 0 

We know that Eq. (22) admits at least one solution, namely the function 
W = Wo given by Eq. (17). To show the uniqueness of Wo in the general case 
it will be sufficient to show that the equation 

[W(X  + r -+ X)  - Wo]pV~176176 + r) = 0 (23) 
X = O  

admits only the trivial solution, provided W and 1410 are not functions of P or 
of its moments. By differentiating (23) successively with respect to ( X )  
appearing in the Poisson distribution [cf. Eq. (8)], one can show straight- 
forwardly that this equation engenders an infinity of relations of the form 

X N [ W -  Wo]P(X)=  0, VN (24) 
X = O  

Thus ( W "  Wo)P(X) vanishes identically, being orthogonal to all poly- 
nomials. Since P ( X )  is positive, this implies 

W - W0 (25) 

The uniqueness theorem is thus proven. 

3. C R I T I Q U E  OF THE B IRTH A N D  DEATH F O R M A L I S M  

Having now an explicit and unambiguous form for the birth and death 
transition probabilities, we shall proceed to a critical analysis of this formal- 
ism when applied to nonequilibrium situations. 

It is not difficult to advance a great number of intuitive arguments point- 
ing out several deficiencies of the birth and death formulation. In the first 
place, the fact that the transition probabilities are computed in terms of 
"collective" variables referring to the entire system [see Eq. (17)] should 
overestimate these quantities. In a chemical mixture only those particles that 
are sufficiently close will be able to undergo a reactive collision. Equally 
crucial is the fact that the description of fluctuations is global in the sense that 
the system is treated as if it remained homogeneous. This discards such 
properties as the size and the intrinsic range, or coherence length, of the 
fluctuations. One expects that these properties should play an important role 
in the onset of cooperative behavior beyond an instability leading to a dis- 
sipative structure. 

We shall now show, on an explicit example, that the birth and death 
formalism can become quite inadequate and give rise to results which are 
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opposite to the predictions based on macroscopic analysis. We consider the 
model 

A + X ~1> 2X 
(26) 

2 X  k2> E 

The system is open to A and E and is assumed to remain homogeneous. More- 
over, due to the irreversible character of the reactions, it operates under highly 
nonequilibrium conditions. The macroscopic equations of mass balance are 

d37/dt = k l A 3 7 -  k~37 2 (27) 

where 37 is the composition variable of species X. It is easily seen that (27) 
admits two steady state solutions. The trivial one 

37o = 0 (28a) 

which is unstable, and the solution 

370 = k lA /k2  (28b) 

which is asymptotically stable with respect to all perturbations. 
The master equation becomes [see Eqs. (4) and (17)] 

dP(X ,  t) /dt  = k I A ( X  - 1)P(X - 1, t) - k l A X P ( X ,  t) 

+ k 2 ( X +  1) (X+ 2) p ( x +  2, t) 
2 

- k2 X ( X  - 1) P ( X ,  t)  (29) 
2 

The steady state solution P0 of this equation is defined by the set 

dPo(O)/dt = k2Po(2) = 0 (30a) 

dPo(1)/dt = - k~APo(1 )  + 3k2P0(3) = 0 (30b) 

dPo(2)/dt = klAPo(1) - 2kiAPo(2) + 6k2Po(4) - k2Po(2) = 0 (30c) 

From (30a) and (30c) as well as from P(k)  >1 0 it follows that 

eo(1) = Po(4) = Po(2) = 0 (31) 

and from (30b) and (31) 

Po(3) = 0 (32) 

This result extends to all Po(k) for k > 4. Thus, the steady state solution of 
(29) is 

Po(k) = 8~,~0 (33) 
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Due to the linearity of the master equation this solution will be unique. The 
surprising aspect of this result is that the birth and death formalism seems to 
have destroyed the stable solution of the macroscopic equation (27) and 
preserved, instead, the physically unacceptable trivial (and unstable) solution: 
Even if the system starts initially with a great number of X particles, it will be 
driven eventually to extinction. Yet the master equation for the same system 
near equilibrium admits the Poisson distribution as a unique steady state 
solution ! 

The conclusion to be drawn from this analysis can only be that the birth 
and death transition probabilities are not written correctly. Now, according 
to Section 2, these probabilities are unique as long as they do not depend on 
the probability distribution or on its moments. 

A first way to overcome the difficulties of the formalism would be, there- 
fore, to introduce transition probabilities which are functionals of P. Un- 
fortunately, there is no obvious method of evaluating these probabilities from 
first principles. 

A more satisfactory solution is suggested by our remarks at the beginning 
of this section about the overestimating of the transition probabilities in a 
large system. A natural remedy of this would be to apply the birth and death 
analysis to a subvolume A V of the entire system, which is sufficiently small 
that all the particles included there have an appreciable probability of under- 
going a reactive collision during a time interval short with respect to the scale 
of the macroscopic evolution. One can expect reasonably that within A V the 
stochastic process generated by Eq. (1) would become Markovian, provided 
one can also account for the coupling between A V and the remainder of the 
system. This coupling arises through the transport of matter and energy 
across the surface separating A V and V - A V. In the following section we 
shall derive a master equation enabling such a local description of fluctuations, 
which does not share the pathological features of the birth and death 
formalism. 

It is remarkable that near equilibrium the necessity of a local description 
of fluctuations is not apparent. In a sense, near equilibrium the entire system 
or different small parts of it behave in an identical fashion and are both 
described by a Poisson distribution. As soon as the system deviates from 
equilibrium, the constraints introduce coupling between neighboring spatial 
elements as well as between the chemical steps. As a result, a global descrip- 
tion of fluctuations of the birth and death type becomes inadequate. 

4. N O N L I N E A R  M A S T E R  E Q U A T I O N  

We consider an ideal chemical mixture and a small part AV of the overall 
reaction volume V surrounded by the surface element AN. n is the outward 
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V-~V 
n 

Fig. i 

normal to AZ (Fig. 1). We assume that the system remains macroscopically 
homogeneous, although the density and composition fluctuations con- 
tinuously break this homogeneity locally, within small subvolumes like A V. 

In order to preserve simplicity, we shall adopt a local but discrete de- 
scription of fluctuations. In other terms, the values of the composition variables 
at each point in space will be redefined as (2) 

p x , ( r ) -  px,(AV) = XdAV (34) 
whereas 

(px,)~v = [x~=o ~P(X~,AV, t ) J /AV (35) 

Here X~ denotes the numbers of particles of a set of chemical components 
within A V. A summation over the various components is implied in (35) and 
throughout this section. Naturally, relations (34) and (35) remain meaningful 
provided the volume 2x V surrounding r is sufficiently small. Subsequently, the 
size of 2xV will be related to the range of  a local fluctuation. As the latter 
remain small in their overwhelming majority, we expect this condition on AV 
to be satisfied. 

The fluctuations of  composition within A V will be given by 

3px,(AV) = (XdA V) - (px,)Av (36) 
We expect that 

lim (px,)6v = finite (37) 
A V ~ O  

and equal to the local value of  the density of X at the point r. In contrast to 
this, 3px, need not be a smooth function of A V. True, 3Px, can become as 
small as may be desired if A V is sufficiently large. However, if A V is small, 
30x~ can become comparable to or even greater than (px,). Thus, the sub- 
volume &V considered in this section will in fact be associated with the 
intrinsic properties of  the fluctuations. 

Let P(X~, Xo, t) be the probability distribution of the entire system, 
where X0 is the number of particles of  the constituents outside A V. We denote 
Rob the contribution of the chemical reactions to the evolution of  P. Due to 
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their local character, the latter will give additive contributions to this evolu- 
tion if the mixture is ideal. Thus 

dP(X~, Xo, t)/dt = Roh(AV) + Roh(V - ~V) + T(zXV, V - ~XV) (38) 

where T is a term coupling A V to the surroundings through the transport of 
matter and energy. In this section we shall be concerned exclusively with the 
transport of matter. Thus, we assume that we deal with a mixture of very large 
thermal conductivity. The extension of our results to the nonisothermal case 
has been carried out recently by Franckson. (2~ The interaction term reduces to 

T =  WoudX~- 1--+ X~; X0 + 1--->Xo)P(X~- 1, X0 + 1, t) 

+ wi.(x~ + 1 - +  L ;  x0 - 1 - +  Xo)P(x ,  + 1, Xo - 1, t) 

- [Wout(X,; Xo) + Wi,(X,; X0)IP(X~, -go, t) (39) 

The transition probabilities per unit time Wout and Win describe the 
frequency of passage of X particles across AZ. Let fo(r, v, t) andf ( r ,  v, t) be 
the probability density distributions of position and momenta for component 
X. According to kinetic theory of gases, (21) 

Woof= dsf dvv.nO(-v.n)fo(r,v, t)  (40a) 

Win: ~A~ dSf dvv.nO(v.n)f(r,v,t) (40b) 

where 0 is the Heaviside function. The requirement of macroscopic homo- 
geneity permits us to express f in the form 

x,  
f0 - V ~~176176 t), f = ~-~ q~(v, t) (41) 

with 
( X o / ( V -  AV)) = (XdAV)  (42) 

We now insert relations (39)-(42) into the master equation (38) and sum over 
the external variables Xo, V -  AV. The term ~o~t Roh(V-  AV) gives a 
vanishing contribution and the remaining terms yield 

dP(X~, AV, t) 
dt 

= R o ~ ( •  

+ ~o,t- ~ dS dvv-n0( -v .n)  v _  AV q~~ 1, Xo + 1, t) 

+ ~A dS f dvv'nO(v'n) X~ + l go~P(X~ + 1, AV, t) + ... (43) 

In the second term of the RHS we introduce the decomposition 

P(X~, Xo, t) = P(X~, AV, t)P(Xo, V - AV, t) + g(X~, Xo, t) (44) 
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where g is the correlation function between A V and V - h V. As a first 
approximation we shall assume that g remains small, i.e., that A V and V - 
A V are statistically independent. It must be emphasized that this assumption 
can only hold i fAV is sufficiently small. In particular, it becomes a rigorous 
consequence of kinetic theory of ideal systems in the limit A V-> 0. However, 
as soon as A V becomes an appreciable part of V--meaning that the fluctua- 
tion has propagated over a macroscopic distance--the assumption breaks 
down completely. 

Bearing this in mind and utilizing the homogeneity condition (42), we 
may transform (43) into a closed form equation: 

dP(X,,  AV, t)/dt = Roh(AV) 

+ ~<X,>[P(X~ - 1, AV, t) - P(X, ,  AV, t)] 

+ .O[(X~ + 1)P(X~ + 1, AV, t) - X~P(X~, AV, t)] (45) 

We have introduced the expression 

1 f" f '  ( - 0 ( - v . n ) < % ( v ,  t)> 
= ~ ?/,z dS J dv v.n~,0(v.n)q0i(v, t) (46) 

which plays the role of an "effective diffusion frequency" of passage of 
particles across A2. In this respect one may note that the distribution f0 used 
in the evaluation of Wout describes the thermal motion of particles directed 
toward h V and coming from a layer of a width l~ of the order of the mean free 
path of X species within the reaction medium521> 

Equation (45) provides the desired generalization of the birth and death 
description. Indeed, ifA V is sufficiently small, Rch(A V) could be treated in the 
same way as in the birth and death formalism2 In addition to this, however, 
one has taken into account explicitly the coupling between AV and the 
surrounding "b ig"  system. The birth and death formalism is recovered 
consistently in the completely local limit A V-+ 0 or [see Eq. (46)] ~ ~ ~ .  
On the other hand, in the limit -~ -+ 0, i.e., AV-+ co, the diffusion term dis- 
appears, but the birth and death description of Roh(AV-+ ~ )  becomes 
inadequate for the reasons developed in Section 3. One can show (see appen- 
dix A) that the solution of Eq. (45) for the autoeatalytic model (26) no longer 
presents the pathological properties pointed out in Section 3. 

5. PROPERTIES OF THE M A S T E R  E Q U A T I O N  

The most characteristic property of the master equation is its nonlinearity, 
arising through the factor (X,> on the right-hand side. The latter is due to the 

a Note that the birth and death assumption would be an inadequate approximation for 
R~h(V -- zX V). 
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passage from a global description to a local one. In this respect, it has the 
same origin as the nonlinear terms of the kinetic equations of statistical 
mechanics like the Boltzmann or the Vlasov equations. An alternative way to 
express this property is that the external environment of AV has been taken 
into account in an average fashion and that the macroscopic homogeneity 
condition (42) has related this average to an average over the small system 
itself. As we shall see later in this section as well as in a subsequent paper, this 
"compet i t ion"  between subsystem and external environment will be respon- 
sible for the propagation of fluctuations leading to an instability. The simi- 
larity between this description and the Prigogine-Herman theory of vehicular 
traffic (22) should be pointed out. (17) 

We next turn to the relation between A V and fluctuations. Essentially, 
this question is equivalent to the problem of evaluating ~ .  According to 
Eq. (46), this parameter is related to the properties of A V as well as to the 
state of the system through the velocity distributions q~, (~0o) = q~: 

~_ (1lAY) ~ ~ Ivied(v) ~X(v) (47) 

where AZ(v) stands for the projection of the surface AZ on a plane perpendicu- 
lar to v. For an isotropic surface AE(v) is constant and equal to the cross 
section of the surface. Thus 

~_ ( A X / A V ) ~ ( T )  (48) 

where -o(T) is a function of temperature only, 

= f dv ]v]~o~ (49) ~7(T) 

In a first qualitative estimate applicable to macroscopically homogeneous 
systems one can approximate cp~ by a Maxwellian distribution. The result is 

-qxeq(T ) = ( 8 k T I r r m x )  1/2 (50) 

where m x  is the mass of constituent X. We may note that this expression is 
approximately equal to the diffusion coefficient of the X species divided by the 
mean free path<21): 

nffq(T) ~ D x / l r  x (51) 

Thus 

AZ D D 
- A V  lr --  llr (52) 

where l is a characteristic c o h e r e n c e  l e n g t h  of the fluctuations. This result can 
also be recovered from an alternative estimation of ~ using the ideas of 
generalized hydrodynamics (see Appendix B). 
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The final step in the determination of-~ is to relate the coherence length I 
to the intrinsic properties of the system. This can be done easily in a system 
where the density fluctuations (not to be confused with the fluctuations in 
composition) can be neglected. 4 Indeed, in this case the macroscopic homo- 
geneity condition yields 

N~v/AV = No/V = Po = const (53) 

where N•v and No are, respectively, the total numbers of particles inside A V 
and in the entire system. Alternatively, one can say that each subvolume AV 
behaves as a closed system. From (53), 

i.e., 

AV = po /N~ 

l oc p~/3NXv 1/3 (54) 

This argument is no longer satisfactory in the presence of density 
fluctuations. The extension of the calculations in this case is in progress. 

Note that if the system undergoes an instability, at the critical point of 
the unstable transition ~ will be related to the system's chemical parameters, 
like the rate constants, etc. In this case, therefore, l [through Eq. (52)] will be 
related quantitatively to the rate of growth of the fluctuations. This relation 
will be expounded in a subsequent paper. 

The final point we want to develop in this section concerns the moment 
equations generated by the master equation (45). Multiplying both sides by X 
and X 2 and summing over all values of X, one finds 

d(X>6v/dt = ~, XRoh(A V) (55) 
X 

d(X2)av/dt  = ~ X2Ron(AV) + 2 ~ [ - ( 3 X 2 >  + (X ) ]  (56) 
x 

where 

<3X2) = (X~) - (X) 2 (57) 

We recall that for a Poisson distribution (~X 2) = (X>. We see that the first 
moment equation is independent of ~ ,  in agreement with the requirement of 
macroscopic homogeneity. On the other hand, diffusion contributes to the 
mean square deviation of fluctuations through a term expressing the deviation 
of the probability distribution function from the Poisson regime. In the limit 

-+ ~ (completely local description) the diffusion term dominates in (56). 
The system evolves then to a steady state given by the Poisson distribution. 

4 We are indebted to Dr. Lefever for this remark. 
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We recover therefore the result of Nicolis and Prigogine (3'~~ based on the 
phase space theory of fluctuations. 

6. C O N C L U D I N G  R E M A R K S  

In this paper we developed an analysis of local fluctuations occurring 
spontaneously in a chemically reacting system. The resulting nonlinear master 
equation exhibits quite explicitly the coherence length of such fluctuations. 
In contrast, in the familiar birth and death description one overlooks the 
local aspect of fluctuations and identifies their coherence length with the 
dimension of the entire system. 

There are two obvious extensions of our analysis: spatially inhomo- 
geneous systems and fluid dynamics. A formulation of the first problem is 
outlined in Appendix C. Details will be published in due course. The some- 
what related problem of fluid dynamical systems is under investigation. 

One of the most important predictions of our analysis is that the devia- 
tion of the probability distribution of fluctuations from the Poisson regime 
necessitates the nucleation of fluctuations having a large coherence length. 
Now the Poisson distribution is a consequence of the grand-canonical 
distribution, (1~ that is, a consequence of maintaining, locally, an equilibrium 
momentum distribution. Thus, a large deviation from the Poisson regime 
indicates that the fluctuation responsible for it will also induce an appreciable 
deviation of the local statistical state from the local equilibrium state. In 
particular, the onset of an instability in an ideal reacting mixture should be 
accompanied by the appearance of a highly nonequilibrium state within the 
small volume nucleating the destabilizing fluctuation. Further comments on 
the onset of instabilities are made in a subsequent paper. 

The approach outlined in this paper can be regarded as a natural ex- 
tension to nonequilibrium situations of the basic ideas developed by Landau (1> 
and recently extended by Wilson (2a~ in the context of equilibrium phase 
transitions. In the latter case, although the system remains macroscopically 
homogeneous, one introduces a free energy density related to the coherence 
length of the fluctuations. The analogy with the picture presented in Section 4 
is striking. 

Finally, it would be of interest to characterize more precisely the type of 
stochastic process described by the nonlinear master equation (45). It is likely 
that this equation belongs to the class of situations referred to by McKean as 
"nonlinear Markov processes. ''~24) Even if the process remains Markovian, 
it certainly loses its stationary character. Indeed, one of the transition proba- 
bilities now depends on the average value (X~, which is an explicit function 
of time. Further study of this equation on solvable models is necessary in 
order to explore its mathematical properties. 
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APPENDIX  A. EFFECT OF DIFFUSION IN THE A U T O C A T A L Y T I C  
M O D E L  (26) 

When diffusion is taken into account, the master equation (29) reads [see 
also Eq. (45)] 

d e ( X ,  t )  = k I A ( X  - 1)e(X - 1, t )  - k l A X P ( X ,  t )  
dt 

+ k 2 ( S +  1)(X+ 2) p ( x + z , t )  
2 

- k2 X ( X  - 1 ) P ( X ,  t)  
2 

+ 9 ( X ) [ P ( X  - 1, t) - P(X, t)] 

+ .O[(X + 1)P(X + 1, t) - XP(X, t)] (A.1) 

where X and A denote the number of particles of these species within a small 
volume A V. 

Introducing the generating function (7) 

f(s, t) = ~ sxp(x,  t), Is I ~< 1 (A.2) 
X = O  

we obtain, at the steady state, 

k~ (s + 1) d2f + (9  - k~As) df -2 ds 2 -d-s - ~ ( X ) f  = 0 (A.3) 

together with the boundary conditions 

f(1) = 1 (normalization) 
(A.4) 

f ( -  1) = finite 

The second condition, which was recently suggested in a somewhat different 
form by Mazo, (15) expresses that the difference between the probabilities of 
having even or odd numbers of particles exists and is finite. 

Transforming to the new variable 

= (s + 1 ) (2k~A/k~)  (A.5) 
we obtain 

d~F (-~ + k~A ) dF ~ ( X )  
Z-dF + k2/2 z dz klA F = 0 (A.6) 

together with the conditions 

F(4klA/k2) = 1, F(0) = finite (A.7) 
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The solution of (A.6) satisfying conditions (A.7) is proportional to the con- 
fluent hypergeometric function 1r 

F(z)  = 1r b, z)/~r b, 4k~A/k2) (A.8) 

with 

a = 9 ( X ) / k l A ,  b = ( 9  + k iA) / (k2/2)  (A.9) 

We now want to show that, thanks to diffusion, solution (A.8) is com- 
patible with a nonvanishing mean value (X) .  To this end, we differentiate 
(A.8) with respect to z and use the relation (7) 

( X )  = -ds ~:i = ~ ,=4klA/k 2 k2 

We obtain 

k 2 ( X )  a 1r + 1, b + 1, 4k iA/k2)  (A.11) 
2 k l A  = -b 1r b, 4k lA /k2)  

Note that this highly nonlinear equation always admits the trivial solution 
( X )  = 0, i.e., a = 0. To show the existence of nontrivial solutions we 
consider the asymptotic limit of a large system: 

A --+ oo 
k ;  1, k y  1 __~ oo, k l A  = finite 

For the purposes of evaluating expression (A. 11) in this asymptotic limit we 
will focus on the k2 dependence of this expression, keeping k l A  fixed: 

v = k ~ l - - + o o  

k l A  = fixed finite quantity (A. 12) 
We observe that 

4k iA /k2  = v~, a = va, b - a = vt3 (A.13) 

where the quantities 

= 4k~A, a = 9 ( X ) / ( k ~ A / k 2 )  

fl = {2(9 + k l A )  - [9 (X) / ( k~A /k2 ) ] }  (h.14) 

have the following properties: (i) they remain finite as v -+ oo ; (ii) they are all 
positive. 

To see this, we consider the exact mean value equation at the steady state: 

k l A ( X )  - k2[(X 2) - ( X ) ]  = 0 (h.15) 

i.e., 

Now 

( X  2) = ( X ) ( k l A  + k2)/k2 

( X  2) >1 ( X )  2 
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Thus, excluding now the trivial value ( X )  = 0, 

{ X )  <~ (k iA  + k2)/k2 = 1 + (kiA/k2)  (A.16) 

Consequently, 

<.% "@ + (k2/kzA) = finite 
(A.17) 

2('@ + k lA)  >1 fl >1 "@ + 2k iA - "@(k2/klA) > 0 

This proves properties (i) and (ii) stated above. The latter guarantee the 
following asymptotic expansion of l~b~ in the limit (A.12)~2s): 

V(b)  [2~r]l/z~-t,xt , ~a 
~b~(a, b, x) r(a)F~(b- a) ~--~-} ~ " ' - ' 1 '  

x (1 + t~)~ + O(v-~)] (A.18) 

where 

/~ = (1 + tl)(~ + ~tl 2) (A.19a) 

and tl is the negative root of 

~t(t + 1) - ~(t + 1) - / 3 t  = 0 (A.19b) 

Substituting into Eq. (A.11), we obtain 

k lA  
~x~ = - ~  + o(k2) • f(k2, "@) (A.20) 

This agrees with the solution (28b) of the macroscopic equation of mass 
balance. Thus, a study of fluctuations taking diffusion into account re- 
establishes this state, which was suppressed in the usual birth and death 
master equation. 

A corollary of the results reported in this appendix is that the nonlinear 
master equation for model (26) admits two steady state solutions. This 
contrasts strikingly with the behavior of the birth and death master equations, 
whose linearity ruled out the possibility of multiple solutions. 

Note that the results of this appendix provide no information on the 
stability of the two steady states. This problem can be handled along the lines 
described in a subsequent paper by Van Nypelseer, Kitahara, and the 
authors. 

It is remarkable that the dominant term in the asymptotic result (A.20) 
does not depend explicitly on the value of-@. The latter could be taken, at this 
final stage, as small as desired. It is necessary to stress, however, that such a 
limit "@-+ 0 cannot be envisaged before the asymptotic limit of the large 
system, v-+ oo. Indeed, if that were the case, the parameter c~ [Eq. (A.14)] 
would not remain finite and the asymptotic expansion given in Eq. (A.18) 
would break down. 
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A P P E N D I X  B. AN A L T E R N A T I V E  E S T I M A T I O N  OF THE 
COEFFIC IENT =~ 

The contribution of diffusion to the equation of mass conservation of an 
X species at a point r within AV reads (see Fig. 1) 

~X/Ot = - div Jdif (B.1) 

In the absence of macroscopic gradients, the diffusion flux Jd~f is a purely 
mechanical quantity. Thus, the transport of matter across AZ can only be the 
result of a local fluctuation resulting in a deviation from uniformity in the 
neighborhood of the point r. We now set 

Ja~ = - D VX + f(r ,  t) (B.2) 

We have added a random term5 to the systematic part of Jdir provided by 
Fick's law. We integrate (B.2) over AV, use Gauss'  divergence theorem, and 
assume 

f d(AV)f(r, t) ~_ (B.3) 0 

provided the volume A V is sufficiently large to permit a destructive inter- 
ference of the random contribution to Jd~f. The result is 

dXJdt = - ( 1 / A V ) D [  (VX)n.dS (B.4) 
aa 

According to the mean free path theory of transport phenomena (21) 

(VXL - n . V X  ~ X ~ -  X_________~o = X~ - (X~ (B.5) 

where lr is a length related to the mean free path. Substituting into (B.4) and 
using macroscopic homogeneity, we obtain 

dXi D AZ 
dt = ~ ( X -  (X>) (B.6) 

Comparing with (38) to (45), we are led to the following identification: 

D AE D 
"~ ~ AV lr - llr (B.7) 

in agreement with Eq. (52). 

5 This term is taken to include all fluctuations except those of chemical composition. 
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A P P E N D I X  C. 

Let 

I N H O M O G E N E O U S  S Y S T E M S  

J+"(R) = - ~ . . < o d V  v.n(fo(R)) (C.1) 

J_"(R) = f~ dv v.n<f(R)) (C.2) 
. n > 0  

J+'~ and J_~ represent, respectively, the average amount of particles entering 
into or leaving the volume AV with velocities perpendicular to a surface 
element in the neighborhood of point R. In a macroscopically homogeneous 
system J+" = J_L The results of Section 4, including the definition (46) of 
-~, are then recovered. In a macroscopically inhomogeneous system these two 
quantities are no longer equal, but differ by an amount corresponding to the 
diffusion flux of the species considered at point R: 

J+ - J- = J d i f  (C.3) 

Thus [see Eq. (40a)] 

Wout = ~,~ dS.(J_(R)  + Jail(R)) (c.4) 

The first term of this expression as well as the transition probability W~. [see 
Eq. (40b)] can be treated exactly as in Section 4. The result is 

a d S . J _ ( R )  = ~ ( X , ) ,  wi. = ~x~ (c.5) 

In dealing with the contribution of Jail(R) we first recall that 

lim ~([q~ dS.Jalf(R)l/Av}=-divJ~f(r) 
DV--O LL,)A~ 

(C.6) 

where r is a point surrounded by AZ and the minus sign is due to the orienta- 
tion chosen for the normal n (see Fig. 1). 

If, on the other hand, AV is kept finite, Eq. (C.6) will represent afirst 
approximation in the sense that it will only give the first term of a Taylor 
expansion of Jdi,(R) around the point r inside AV: 

(1/AV) ~zx~ dS.aaif(R) 

= - div Jail(r) 

+ higher order spatial derivative terms (C.7) 
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On the other hand, if the macroscopic inhomogeneities do not vary appre- 
ciably over a mean free path lr, Jd~f could be approximated by Fick's law: 

J~ t  ~- - D V (  X~)/ A V (C.8) 

Substituting (C.5)-(C.8) into (40a), we obtain 

Wout = ~ ( X , )  + D V2(X~) + higher order terms (C.9) 

Both (X,) and the Laplacian are defined at the point r inside A V according to 
relation (34). 

The master equation now reads 

O p(~ ,  A V, t) 
~t 

- [~<X,) + D V2(X,) + ...] 

x (P(X~ - 1, AV,  t)  - P(X~, AV, t))  

+ ~ ( x ,  + l )P(X,  + l, Av, t) - ~ x , P ( X , ,  Av ,  t) 

+ chemical terms (C. 10) 

The first two moment equations generated by (C. 10) are 

~ ( X ) / d t  = D V 2 ( X )  + chemical terms (C.11) 

~(<ax~> - <x>)/~t = -~[<ax~> - <x>] 

+ chemical terms (C.12) 

In the first relation, we recover the mass balance equation in an inhomogeneous 
system with the familiar diffusion term [see Eq. (2)]. On the other hand, the 
second moment equation seems to depend on inhomogeneity only through 
the mean value <X> which is affected according to (C.11). An immediate 
consequence is that in the absence of chemical reactions the steady state 
probability distribution will always have a Poisson variance, independently of 
the local gradients. This conclusion is quite reasonable for an ideal mixture 
in the absence of convective motion. 
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